
95-865 Unstructured Data Analytics

Slides by George H. Chen

Lecture 14: Wrap up RNNs; a glimpse of word
embeddings; start coverage on text generation

Word index Word 2D Embedding

0 this [-0.57, 0.44]

1 movie [0.38, 0.15]

2 rocks [-0.85, 0.70]

3 sucks [-0.26, 0.66]

(Flashback) Sentiment Analysis with IMDb Reviews

Training reviews

Step 1: Tokenize & build vocabulary

Step 2: Encode each review as a sequence of
word indices into the vocab

Word index Word

0 this

1 movie

2 rocks

3 sucks

“this movie rocks”

“this movie sucks”

0 1 2

0 1 3

“this sucks” 0 3

Ordering of words
matters

Different reviews can
have different lengths

Step 3: Use word embeddings to represent each word

Word index Word 2D Embedding

0 this [-0.57, 0.44]

1 movie [0.38, 0.15]

2 rocks [-0.85, 0.70]

3 sucks [-0.26, 0.66]

(Flashback) Sentiment Analysis with IMDb Reviews

Training reviews

Step 1: Tokenize & build vocabulary

Step 2: Encode each review as a sequence of
word indices into the vocab

Word index Word

0 this

1 movie

2 rocks

3 sucks

Step 3: Use word embeddings to represent each word

“this movie sucks”

[-0.57, 0.44]
[0.38, 0.15]
[-0.26, 0.66]

0 1 3

(Flashback) Do Data Actually Live on
Manifolds?

Image source: http://www.adityathakker.com/wp-content/uploads/2017/06/word-
embeddings-994x675.png

Sentiment Analysis with IMDb Reviews

[-0.57, 0.44]
[0.38, 0.15]
[-0.26, 0.66]

[-0.57, 0.44]
[0.38, 0.15]
[-0.26, 0.66]

Em
be

dd
in

g“this movie sucks”

0 1 30 1 3

Sentiment Analysis with IMDb Reviews

[-0.57, 0.44]

[0.38, 0.15]

[-0.26, 0.66]

Em
be

dd
in

g
Em

be
dd

in
g

Em
be

dd
in

g

0

1

3

“this movie sucks”

Sentiment Analysis with IMDb Reviews

[-0.57, 0.44]

[0.38, 0.15]

[-0.26, 0.66]

Em
be

dd
in

g
Em

be
dd

in
g

Em
be

dd
in

g

0

1

3

“this movie sucks”

RNN layer

Sentiment Analysis with IMDb Reviews

[-0.57, 0.44]

[0.38, 0.15]

[-0.26, 0.66]

Em
be

dd
in

g
Em

be
dd

in
g

Em
be

dd
in

g

0

1

3

“this movie sucks”

C
la

ss
ifi

er

RNN layer

We only keep the last
time step’s output

Sentiment Analysis with IMDb Reviews

[-0.57, 0.44]

[0.38, 0.15]

[-0.26, 0.66]

Em
be

dd
in

g
Em

be
dd

in
g

Em
be

dd
in

g

0

1

3

“this movie sucks”

C
la

ss
ifi

er

RNN layer

Each “layer” in orange
dotted box corresponds

to an iteration of the
RNN's for loop & these

layers share the same
parameters!

Sentiment Analysis with IMDb Reviews

[-0.57, 0.44]

[0.38, 0.15]

[-0.26, 0.66]

Em
be

dd
in

g
Em

be
dd

in
g

Em
be

dd
in

g

0

1

3

“this movie sucks”

C
la

ss
ifi

er

RNN layer

Each “layer” in orange
dotted box corresponds

to an iteration of the
RNN's for loop & these

layers share the same
parameters!

Sentiment Analysis with IMDb Reviews

[-0.57, 0.44]

[-0.26, 0.66]

Em
be

dd
in

g
Em

be
dd

in
g

0

3

“this sucks”

RNNs work with variable-length inputs!

Note: Sometimes in text analysis, the word embeddings are treated as fixed,
so we do not update them during training

C
la

ss
ifi

er

RNN layer

Each “layer” in orange
dotted box corresponds

to an iteration of the
RNN's for loop & these

layers share the same
parameters!

Note that the “RNN layer” here could refer to a vanilla ReLU RNN
or a more complicated RNN such as an “LSTM”, “GRU”, etc

What if we didn’t use word embeddings?

Word index Word 2D Embedding

0 this [-0.57, 0.44]

1 movie [0.38, 0.15]

2 rocks [-0.85, 0.70]

3 sucks [-0.26, 0.66]

Sentiment Analysis with IMDb Reviews

Training reviews

Step 1: Tokenize & build vocabulary

Step 2: Encode each review as a sequence of
word indices into the vocab

Word index Word

0 this

1 movie

2 rocks

3 sucks

Step 3: Use word embeddings to represent each word

“this movie sucks”

[-0.57, 0.44]
[0.38, 0.15]
[-0.26, 0.66]

0 1 3

Word index Word One-hot encoding

0 this [1, 0, 0, 0]

1 movie [0, 1, 0, 0]

2 rocks [0, 0, 1, 0]

3 sucks [0, 0, 0, 1]

Bad Strategy: One-Hot Encoding

Training reviews

Step 1: Tokenize & build vocabulary

Step 2: Encode each review as a sequence of
word indices into the vocab

Word index Word

0 this

1 movie

2 rocks

3 sucks

“this movie sucks”

[1, 0, 0, 0]
[0, 1, 0, 0]
[0, 0, 0, 1]

0 1 3

Step 3: Use one-hot encoding to represent each word

This strategy tends to work poorly in practice:
distance between every pair of words is the same

in one-hot encoding!

Recap/Important Reminder
• Neural nets are not doing magic; incorporating structure is very

important to state-of-the-art deep learning systems

• Word embeddings encode semantic structure—words with
similar meaning are mapped to nearby Euclidean points

• CNNs encode semantic structure for images—images that are
“similar” are mapped to nearby Euclidean points

• An RNN tracks how what’s stored in memory changes over time —
an RNN’s job is made easier if the memory is a semantically
meaningful representation

A brief glimpse at word embeddings

“learn”

“study”

“car”

We used spaCy/CountVectorizer/
TfidfVectorizer

PCA
(e.g., 100-dim)

Either TF
or TF-IDF

vector

Either TF
or TF-IDF

vector

Either TF
or TF-IDF

vector

100-dim
PCA vector

100-dim
PCA vector

100-dim
PCA vector

“learn”

“study”

“car”

word embedding<latexit sha1_base64="/K2XKbqP78k6YM4sbcHgZptZAfU=">AAAB7XicbVA9SwNBEJ2LXzF+RS1tDoNgFe5EooVFwMYygvmA5Ah7e3vJmr3dY3dOCCH/wcZCEVv/j53/xk1yhSY+GHi8N8PMvDAV3KDnfTuFtfWNza3idmlnd2//oHx41DIq05Q1qRJKd0JimOCSNZGjYJ1UM5KEgrXD0e3Mbz8xbbiSDzhOWZCQgeQxpwSt1OrRSKHplyte1ZvDXSV+TiqQo9Evf/UiRbOESaSCGNP1vRSDCdHIqWDTUi8zLCV0RAasa6kkCTPBZH7t1D2zSuTGStuS6M7V3xMTkhgzTkLbmRAcmmVvJv7ndTOMr4MJl2mGTNLFojgTLip39robcc0oirElhGpub3XpkGhC0QZUsiH4yy+vktZF1a9Va/eXlfpNHkcRTuAUzsGHK6jDHTSgCRQe4Rle4c1Rzovz7nwsWgtOPnMMf+B8/gCwG480</latexit>· · ·

<latexit sha1_base64="/K2XKbqP78k6YM4sbcHgZptZAfU=">AAAB7XicbVA9SwNBEJ2LXzF+RS1tDoNgFe5EooVFwMYygvmA5Ah7e3vJmr3dY3dOCCH/wcZCEVv/j53/xk1yhSY+GHi8N8PMvDAV3KDnfTuFtfWNza3idmlnd2//oHx41DIq05Q1qRJKd0JimOCSNZGjYJ1UM5KEgrXD0e3Mbz8xbbiSDzhOWZCQgeQxpwSt1OrRSKHplyte1ZvDXSV+TiqQo9Evf/UiRbOESaSCGNP1vRSDCdHIqWDTUi8zLCV0RAasa6kkCTPBZH7t1D2zSuTGStuS6M7V3xMTkhgzTkLbmRAcmmVvJv7ndTOMr4MJl2mGTNLFojgTLip39robcc0oirElhGpub3XpkGhC0QZUsiH4yy+vktZF1a9Va/eXlfpNHkcRTuAUzsGHK6jDHTSgCRQe4Rle4c1Rzovz7nwsWgtOPnMMf+B8/gCwG480</latexit>· · ·

<latexit sha1_base64="/K2XKbqP78k6YM4sbcHgZptZAfU=">AAAB7XicbVA9SwNBEJ2LXzF+RS1tDoNgFe5EooVFwMYygvmA5Ah7e3vJmr3dY3dOCCH/wcZCEVv/j53/xk1yhSY+GHi8N8PMvDAV3KDnfTuFtfWNza3idmlnd2//oHx41DIq05Q1qRJKd0JimOCSNZGjYJ1UM5KEgrXD0e3Mbz8xbbiSDzhOWZCQgeQxpwSt1OrRSKHplyte1ZvDXSV+TiqQo9Evf/UiRbOESaSCGNP1vRSDCdHIqWDTUi8zLCV0RAasa6kkCTPBZH7t1D2zSuTGStuS6M7V3xMTkhgzTkLbmRAcmmVvJv7ndTOMr4MJl2mGTNLFojgTLip39robcc0oirElhGpub3XpkGhC0QZUsiH4yy+vktZF1a9Va/eXlfpNHkcRTuAUzsGHK6jDHTSgCRQe4Rle4c1Rzovz7nwsWgtOPnMMf+B8/gCwG480</latexit>· · ·

Tokens/words

word embedding

word embedding

Neural net model

Word Embeddings:
Even without labels, we can set up

a prediction problem!

Hide part of training data and try to predict what you’ve hid!

This is commonly referred to as self-supervised learning

We're setting up a prediction task in an unsupervised setting!

Word Embeddings: word2vec (2013)

Can solve tasks like the following:

Man is to King as Woman is to Queen???

Word Embeddings: word2vec (2013)

Man is to King as Woman is to Queen

Can solve tasks like the following:

Word Embeddings: word2vec (2013)

Man is to King as Woman is to Queen

Which word doesn’t belong?
blue, red, green, crimson, transparent

Can solve tasks like the following:

Word Embeddings: word2vec (2013)

Man is to King as Woman is to Queen

Which word doesn’t belong?
blue, red, green, crimson, transparent

Can solve tasks like the following:

Word Embeddings: word2vec (2013)

Image source: https://deeplearning4j.org/img/countries_capitals.png

Word Embeddings: word2vec (2013)

The opioid epidemic or opioid crisis is the rapid increase in the use of
prescription and non-prescription opioid drugs in the United States and
Canada in the 2010s.

Predict context of each word!

Training data point:

“Training labels”:

epidemic

the, opioid, or, opioid

Word Embeddings: word2vec (2013)

The opioid epidemic or opioid crisis is the rapid increase in the use of
prescription and non-prescription opioid drugs in the United States and
Canada in the 2010s.

Predict context of each word!

Training data point: or

“Training labels”: opioid, epidemic, opioid, crisis

Word Embeddings: word2vec (2013)

The opioid epidemic or opioid crisis is the rapid increase in the use of
prescription and non-prescription opioid drugs in the United States and
Canada in the 2010s.

Predict context of each word!

Training data point: opioid

“Training labels”: epidemic, or, crisis, is

Also provide “negative” examples of words that are not likely to be context
words (by randomly sampling words elsewhere in document)

These are “positive” (correct)
examples of what context

words are for “opioid”

Word Embeddings: word2vec (2013)

The opioid epidemic or opioid crisis is the rapid increase in the use of
prescription and non-prescription opioid drugs in the United States and
Canada in the 2010s.

Predict context of each word!

Training data point: opioid

“Negative training label”: 2010s

Also provide “negative” examples of words that are not likely to be context
words (by randomly sampling words elsewhere in document)

randomly sampled word

Word2vec Neural Net

Linear
(# nodes = vocab size),

Softmax

Linear, no bias vector
(100 nodes)

“opioid”

[0, 0, …, 1, …, 0]
Use one-hot encoding

vector length = vocab size

index of “opioid” in vocab

Want real context
words (e.g.,
“epidemic”, “crisis”)
to have high
probability

Learned weight matrix used
as word embedding!

(Treat i-th col of weight matrix as word embedding for i-th word)

Word2vec Neural Net

Linear, no bias vector
(100 nodes)

“opioid”

[0, 0, …, 1, …, 0]
Use one-hot encoding

vector length = vocab size

index of “opioid” in vocab

Learned weight matrix used
as word embedding!

(Treat i-th col of weight matrix as word embedding for i-th word)

After training the word2vec
model, treat this layer as fixed!

In PyTorch, can store already
trained word2vec model (and

other similar models like GloVe)
in the Embedding layer

Em
be

dd
in

g

“pen”

“cat”

“health”

Tokens/words

word embedding

word embedding

word embedding

word2vec

Em
be

dd
in

g
Em

be
dd

in
g

Em
be

dd
in

g

“pen”

Tokens/words

word embedding

word2vec

Em
be

dd
in

g

Even though “pen” has multiple meanings
(e.g., what you write with vs a play pen),

word2vec would produce the same word embedding for “pen”

What about a word that has
multiple meanings?

Challenging: try to split up word into
multiple words depending on meaning

(requires inferring meaning from context)

This problem is called word sense disambiguation (WSD)

(Flashback)

Modern Word Embeddings Use Context

“I”

“write”

“using”

“a”

“pen”

word embedding

word embedding

word embedding

word embedding

word embedding

More complicated neural
net (compared to

applying Embedding
separately to each word)

(such as BERT, which came out in 2018)

You provide a
whole sentence

(or a longer
document)

Time-permitting, we’ll talk
more about high level ideas

of what happens in this
neural net later this week

(Flashback) Sentiment Analysis with IMDb Reviews

[-0.57, 0.44]

[0.38, 0.15]

[-0.26, 0.66]

Em
be

dd
in

g
Em

be
dd

in
g

Em
be

dd
in

g

0

1

3

“this movie sucks”

C
la

ss
ifi

er

RNN layer

Each “layer” in orange
dotted box corresponds

to an iteration of the
RNN's for loop & these

layers share the same
parameters!

What the Demo Will Actually Do
128-dim

word
embedding

0

1

3

“this movie sucks”

C
la

ss
ifi

er

LSTM

Each “layer” in orange
dotted box corresponds

to an iteration of the
RNN's for loop & these

layers share the same
parameters!

BERT-Tiny

The original BERT base model from
2018 is very large (110M parameters

with 768-dim word embeddings)

We'll use Google's BERT-Tiny
model (a version ported to

Hugging Face)
32-dim
vector

Word index Word 2D Embedding

0 this [-0.57, 0.44]

1 movie [0.38, 0.15]

2 rocks [-0.85, 0.70]

3 sucks [-0.26, 0.66]

Sentiment Analysis with IMDb Reviews

Training reviews

Step 1: Tokenize & build vocabulary

Step 2: Encode each review as a sequence of
word indices into the vocab

Word index Word

0 this

1 movie

2 rocks

3 sucks

Step 3: Use word embeddings to represent each word

“this movie sucks”

[-0.57, 0.44]
[0.38, 0.15]
[-0.26, 0.66]

0 1 3

We do not store these embeddings and will instead compute them as needed
(they depend on context anyways when using BERT/BERT-Tiny!)

In the demo, use the
vocabulary from a pre-

trained BERT-Tiny

Token ID Token

Each token represented as a 128-dim BERT-Tiny
word embedding

BERT/BERT-Tiny uses
tokens that can be smaller
than a word (specifically,
unknown words get split

into subwords)
token IDs

token

Variable-Length Time Series in PyTorch
In PyTorch, how do we specify a batch of time series of varying lengths?

Example: 5 data points (each one is a time series) of lengths 3, 2, 5, 1, 7

Common way: give a 2D table with all time series padded to the max length,
and also give a 1D table specifying the lengths

Time steps

Data point

Blue entries contain actual
values from the 5 time series

Gray entries contain
padded values (e.g., zeros)

[3, 2, 5, 1, 7]

This shows up in the demo when
we specify an example input to

the neural net

Sentiment Analysis with IMDb Reviews Demo

The next series of slides provide a “cheatsheet” explaining
what the sentiment analysis demo is doing

I will not go over the demo in detail in class and will expect you to read it fully
(I will go over the cheatsheet with you)

The demo does not use a vanilla ReLU RNN and instead uses an LSTM
(you are not expected to know details of what’s under the hood for an LSTM)

Sentiment Analysis Demo Cheatsheet

1. Load in training data (25000 IMDb reviews)

2. Do a 80/20 split of the training data into:
- proper training data (20000 reviews)
- validation data (5000 reviews)

3. Convert each proper training review into token IDs using
BERT-Tiny’s encode method

train_dataset

proper_train_dataset
val_dataset

list of length-2 tuples
each containing

(review, label 0 or 1)

"Master cinéaste Alain Resnais likes to work with those actors"

['master', 'ci', '##eas', '##te", 'alain', 'res', '##nais',
'likes', 'to', 'work', 'with', 'those', 'actors']

[3040, 25022, 26737, 2618, 15654, 24501, 28020, 7777,
 2000, 2147, 2007, 2216, 5889]

Important: we do not build a vocabulary from
scratch since we just use BERT-Tiny's vocabulary!

proper_train_dataset_encoded list of length-2 tuples each containing
(encoded review, label 0 or 1)val_dataset_encoded

Sentiment Analysis Demo Cheatsheet

1. Load in training data (25000 IMDb reviews)

2. Do a 80/20 split of the training data into:
- proper training data (20000 reviews)
- validation data (5000 reviews)

3. Convert each proper training review into token IDs using
BERT-Tiny’s encode method

train_dataset

proper_train_dataset
val_dataset

list of length-2 tuples
each containing

(review, label 0 or 1)

"Master cinéaste Alain Resnais likes to work with those actors"

['master', 'ci', '##eas', '##te", 'alain', 'res', '##nais',
'likes', 'to', 'work', 'with', 'those', 'actors']

[3040, 25022, 26737, 2618, 15654, 24501, 28020, 7777,
 2000, 2147, 2007, 2216, 5889]

Important: we do not build a vocabulary from
scratch since we just use BERT-Tiny's vocabulary!

Example: 5 data points (each one is a time series) of lengths 3, 2, 5, 1, 7

Time steps

Data point

Blue entries contain actual
values from the 5 time series

Gray entries contain
padded values (e.g., zeros)

4. Construct neural net (instead of nn.Sequential, we make a class
that inherits from nn.module)

PyTorch convention: the forward function specifies how a neural net
actually processes a batch of input data

The neural net we constructed has a
forward function with two inputs:
- a 2D table
 (each column is for 1 data point)
- a 1D table
 (specifies length for each time series)

proper_train_dataset_encoded list of length-2 tuples each containing
(encoded review, label 0 or 1)val_dataset_encoded

Data types matter in PyTorch (torch.long means these tables store integers)

Example: 5 data points (each one is a time series) of lengths 3, 2, 5, 1, 7

Time steps

Data point

Blue entries contain actual
values from the 5 time series

Gray entries contain
padded values (e.g., zeros)

actually processes a batch of input data

The neural net we constructed has a
forward function with two inputs:
- a 2D table
 (each column is for 1 data point)
- a 1D table
 (specifies length for each time series)

5. Train the neural net for some user-specified max number of epochs

6. Automatically tune on one hyperparameter:
choose # of epochs to be the one achieving highest validation accuracy

7. Load in the saved neural net from the best # of epochs

8. Finally load in test data, tokenize and convert each test review into
a list of integers, and use the trained neural net to predict

Blue entries contain actual
values from the 5 time series

Gray entries contain
padded values (e.g., zeros)

Data types matter in PyTorch (torch.long means these tables store integers)

Two Demos

First demo (very short): How to use word embedding models from
Hugging Face's transformers package

Second demo (long): sentiment analysis demo
(again, please actually read it carefully including the comments after class)

Text generation as a
prediction problem

Just like the word2vec prediction problem:
we set up a self-supervised prediction problem

The opioid epidemic or opioid crisis is
the rapid increase in the use of
prescription and non-prescription opioid
drugs in the United States and Canada in
the 2010s.

Let’s treat this string as a single data point (a time series of tokens)

For tokenization, let’s split by individual characters
(so no need to use spaCy)

Given ['T'], predict next character 'h'

The opioid epidemic or opioid crisis is
the rapid increase in the use of
prescription and non-prescription opioid
drugs in the United States and Canada in
the 2010s.

Let’s treat this string as a single data point (a time series of tokens)

For tokenization, let’s split by individual characters
(so no need to use spaCy)

Given ['T'], predict next character 'h'

Given ['T', 'h'], predict next character 'e'

The opioid epidemic or opioid crisis is
the rapid increase in the use of
prescription and non-prescription opioid
drugs in the United States and Canada in
the 2010s.

Let’s treat this string as a single data point (a time series of tokens)

For tokenization, let’s split by individual characters
(so no need to use spaCy)

Given ['T'], predict next character 'h'

Given ['T', 'h'], predict next character 'e'

Given ['T', 'h', 'e'], predict next character ' '

The opioid epidemic or opioid crisis is
the rapid increase in the use of
prescription and non-prescription opioid
drugs in the United States and Canada in
the 2010s.

Let’s treat this string as a single data point (a time series of tokens)

For tokenization, let’s split by individual characters
(so no need to use spaCy)

Given ['T'], predict next character 'h'

Given ['T', 'h'], predict next character 'e'

Given ['T', 'h', 'e'], predict next character ' '

Given ['T', 'h', 'e', ' '], predict next character 'o'

The opioid epidemic or opioid crisis is
the rapid increase in the use of
prescription and non-prescription opioid
drugs in the United States and Canada in
the 2010s.

Let’s treat this string as a single data point (a time series of tokens)

For tokenization, let’s split by individual characters
(so no need to use spaCy)

Given ['T'], predict next character 'h'

Given ['T', 'h'], predict next character 'e'

Given ['T', 'h', 'e'], predict next character ' '

Given ['T', 'h', 'e', ' '], predict next character 'o'

…

If the string has L + 1 characters total, then there are L such prediction tasks

How to solve this prediction task with an RNN

We will now keep track of outputs at every time step of the RNN

(Previously for sentiment analysis, we only kept the output at the final time step)

Vocabulary
First, let's agree on a vocabulary to use
(e.g., pick the unique ones seen in the dataset)

RNN Language Model
'T' 'h' 'e' ' ' 'o' 'p'['T', 'h', 'e', ' ', 'o', 'p', 'i']

length = L + 1

L = 6 in this example

44

60

57

1

67

68

RNN Language Model
'T'

'h'

'e'

' '

'o'

'p'

encode as
token ID

44

60

57

1

67

68

Em
be

dd
in

g
Em

be
dd

in
g

Em
be

dd
in

g
Em

be
dd

in
g

Em
be

dd
in

g
Em

be
dd

in
g

RNN layer

Try to predict 'h'

Try to predict 'e'

Try to predict ' '

Try to predict 'o'

Try to predict 'p'

Try to predict 'i'

C
la

ss
ifi

er
C

la
ss

ifi
er

C
la

ss
ifi

er
C

la
ss

ifi
er

C
la

ss
ifi

er
C

la
ss

ifi
er

Linear layer with softmax activation,
output nodes = vocab size

